extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C26).C22 = D4⋊2D13 | φ: C22/C1 → C22 ⊆ Aut C2×C26 | 104 | 4- | (C2xC26).C2^2 | 208,40 |
(C2×C26).2C22 = C13×C4○D4 | φ: C22/C2 → C2 ⊆ Aut C2×C26 | 104 | 2 | (C2xC26).2C2^2 | 208,48 |
(C2×C26).3C22 = C4×Dic13 | φ: C22/C2 → C2 ⊆ Aut C2×C26 | 208 | | (C2xC26).3C2^2 | 208,11 |
(C2×C26).4C22 = C26.D4 | φ: C22/C2 → C2 ⊆ Aut C2×C26 | 208 | | (C2xC26).4C2^2 | 208,12 |
(C2×C26).5C22 = C52⋊3C4 | φ: C22/C2 → C2 ⊆ Aut C2×C26 | 208 | | (C2xC26).5C2^2 | 208,13 |
(C2×C26).6C22 = D26⋊C4 | φ: C22/C2 → C2 ⊆ Aut C2×C26 | 104 | | (C2xC26).6C2^2 | 208,14 |
(C2×C26).7C22 = C23.D13 | φ: C22/C2 → C2 ⊆ Aut C2×C26 | 104 | | (C2xC26).7C2^2 | 208,19 |
(C2×C26).8C22 = C2×Dic26 | φ: C22/C2 → C2 ⊆ Aut C2×C26 | 208 | | (C2xC26).8C2^2 | 208,35 |
(C2×C26).9C22 = C2×C4×D13 | φ: C22/C2 → C2 ⊆ Aut C2×C26 | 104 | | (C2xC26).9C2^2 | 208,36 |
(C2×C26).10C22 = C2×D52 | φ: C22/C2 → C2 ⊆ Aut C2×C26 | 104 | | (C2xC26).10C2^2 | 208,37 |
(C2×C26).11C22 = D52⋊5C2 | φ: C22/C2 → C2 ⊆ Aut C2×C26 | 104 | 2 | (C2xC26).11C2^2 | 208,38 |
(C2×C26).12C22 = C22×Dic13 | φ: C22/C2 → C2 ⊆ Aut C2×C26 | 208 | | (C2xC26).12C2^2 | 208,43 |
(C2×C26).13C22 = C13×C22⋊C4 | central extension (φ=1) | 104 | | (C2xC26).13C2^2 | 208,21 |
(C2×C26).14C22 = C13×C4⋊C4 | central extension (φ=1) | 208 | | (C2xC26).14C2^2 | 208,22 |
(C2×C26).15C22 = Q8×C26 | central extension (φ=1) | 208 | | (C2xC26).15C2^2 | 208,47 |